
a Family Math Night event

Participant Booklet
www.FamilyMathNight.com
A Product of Math Unity - www.MathUnity.com

Gellin' with Geometry

Welcome to Family Math Night! Tonight we present Gellin' with Geometry ${ }^{\text {M, }}$, an exploration in 2- and 3dimensional geometry.

Geometry is the study of figures and shapes. When we read a map we are using 2-D geometry. When we build things, we are using 3-D geometry. Studying geometry is important because it helps develop spatial reasoning and problem solving skills. A lot of professions use the skills developed by studying geometry: artists, mechanics, engineers, drafters, carpenters, architects, surgeons, fashion designers and many more.

Tonight, you and your child(ren) will have an opportunity to explore hands-on activities in geometry. Through origami and a friendly game of bingo, you'll be honing your geometric vocabulary. Working on puzzles will help develop persistence and spatial reasoning skills. And turning nets into solids will help make connections between 2-D and 3-D geometry. You'll even create some of your very own projects to take home.

So get ready to explore the visual side of math with our presentation of Gellin' with Geometry!
© 2014 Math Unity. All rights reserved.
No part of this booklet may be reproduced or transmitted in any form or by any means without written permission from Math Unity, LLC except in the case of the purchaser of this kit making copies to be used for a Gellin' with Geometry ${ }^{\text {M }}$ Family Math Night event at their school or facility.

Sy/nNRNEH[Dy	
Beginning	Use the reflection mirrors and symmetry task cards to look for lines of symmetry in the pictures. Some of the pictures have only one line of symmetry while some have more than one line of symmetry. There is also one picture with no lines of symmetry. Can you find it?
Intermediate	Use the pattern blocks to complete the symmetrical patterns on the task cards by filling in the design that is already on the cards and then completing the other half of the design symmetrically. Try the two Challenge! task cards.
Advanced	Use the $3^{\prime \prime} \times 3^{\prime \prime}$ tagboard to draw a shape that starts at one corner and ends at that same corner. Do not get too detailed in the design as it will be difficult to cut out. Trace it four times in a rotational pattern on the $7^{\prime \prime} \times 7^{\prime \prime}$ tagboard. Color in and add details. See Station Facilitator for help.
Questions to ask your child:	
- What strategy did you use to see if the design had more than one line of symmetry? (B)	
- Can you name some objects in this room that have exactly one line of symmetry? (B, I)	
\square How many lines of symmetry does your design have? (A)	
\square How many lines of symmetry would a daisy with six rotating petals have? (Answer: 6) (A)	

Coommetryy Bingo	
Beginning	Play Geometry Bingo with your child until someone wins by getting three bingo chips either horizontally, vertically, or diagonally. If you like, play blackout where you need to fill their entire board with bingo chips.
Intermediate	Play Geometry Bingo with your child until someone wins by getting four bingo chips either horizontally, vertically, or diagonally. If you like, play blackout where you need to fill their entire board with bingo chips.
Advanced	Play Geometry Bingo with your child until someone wins by getting four bingo chips either horizontally, vertically, or diagonally. If you like, play blackout where you need to fill their entire board with bingo chips.
Questions to ask your child:	
— What shapes fall under the category of parallelogram? (square, rectangle, rhombus, parallelogram) (I)	
\square What is the difference between a line segment and a ray? (A line segment has two endpoints and a ray has only one.) (A)	
- What do we call an angle with a measurement less than 90° ? (Acute angle. Obtuse angles are greater than 90°.) (A)	

Low To apo family Mert Might

(There are 8 stations to explore. Each station has one or two station facilitators to help with materials and questions.
— There is no particular order to complete the stations.

— If you become involved in one of the activities, stay there. You will learn more through an in-depth study.
\square Each activity can be done on a variety of levels. You may choose to start at a beginning level (B), or you may choose to start at an intermediate (I) or advanced level (A). Loosely, the levels run K-1, 2-3, and 4-5.
— Work with your child. It is more fun to learn things together.
\square At the bottom of each activity in this booklet are questions you may ask your child while doing the activity. They are a guide to help get your child to think about the math they are working on at a deeper level. This is a starter list. Feel free to ask your own questions. Question levels:

$$
\begin{aligned}
B & =\text { Beginning } \\
I & =\text { Intermediate } \\
A & =\text { Advanced }
\end{aligned}
$$

\square Some stations get you and your child involved in making a project. These are yours to take home and share with others.
— And, finally...HAVE FUN! Enjoy the time you are spending together.

	ఆそロ（－n そด○
Beginning	Read the task cards to your child and have him／her create the shapes on the geoboard． Work together to complete the directions on the cards． Note：Equal parts does not mean those parts must look exactly the same．
Intermediate	Work with your child to complete the directions on the task cards． Note：Equal parts does not mean those parts must look exactly the same．
Advanced	Work with your child to complete the directions on the task cards． Note：Equal parts does not mean those parts must look exactly the same．
Questions to ask your child：	
\square Explain how you partitioned the shape into two equal parts？（B）	
\square Which fraction is larger， $1 / 4$ or $11 / 2$ ？How do you know？（I）	
\square What does the bottom number of a fraction tell us？（ $1, A$ ）	
－Why don＇t the fractional parts on the geoboard need to look exactly the same？$(1, A)$	
－Name an equivalent fraction for $1 / 2$. ． $2 / 4$, etc．）（ $\mathrm{I}, \mathrm{A})$	

$8-0$ She ofs	
Beginning	Have your child pick one of the solids on the table. Now have him/her stick their hand into the feely bag and try to feel for the solid that matches the one they picked without peeking. When they think they have the correct solid, they bring it out of the bag and compare. Replace and repeat with a different solid.
Intermediate	Choose one of the 5 Creating 3-D Solids tagboard nets and try to match the net on the sheet with one of the solids on the table. When you think you know which solid the net matches, cut out the net and tape it together. Were you right?
Advanced	Choose one of the solids on the table then fill in the Designing Nets activity sheet. Next, make a net of your chosen solid by tracing it on the cardstock. Be sure to include all of the faces. Cut out and tape together.
Questions to ask your child:	
- How did you know you had picked the correct solid from the bag? (B)	
\square How many faces does a cube, square pyramid, etc. have? (I)	
\square Explain why a cylinder has exactly 3 faces. ($1, \mathrm{~A}$)	
— Name some objects where a net was used in the design. (Cereal boxes, soccer balls, sugar cone...) (A)	

